QUESTION 1:

(

What mass of hydrochloric acid (HCl) is required to completely react with 196.2 grams of zinc (Zn)?

$$\sqrt{?}$$

$$Zn_{(s)} + 2HCl_{(aq)} \rightarrow ZnCl_{2(aq)} + H_{2(g)}$$

*(Zn) 65.38 x	1	$n(Zn) = \underline{m} * M$
65.38 g/	mot	= <u>196.2</u>
		65.38
		<u>n(Zn) = 3.00 mol</u>

$$n(HCl) = 2 \times n(Zn)$$

= 2 x 3.00
 $n(HCl) = 6.00 \text{ mol}$

m(HCl)	=	n	x	*M
	=	6.00	x	36.458
.:. <u>m(HCl)</u>	=	218.7	7g (<u>or</u>
	=	<u>219</u>	g	(3S.F.)

1.008	X	
35.45	X	1

QUESTION 2:

What mass of ZnCl₂ will be produced when 146 grams of HCl is reacted with EXCESS (more than enough!) zinc metal?

	√ ?
$Zn_{(s)} + 2H$	$[Cl_{(aq)} \rightarrow ZnCl_{2(aq)} + H_{2(g)}]$
*(HCl) 1.008 x 1	$n(HCl) = \underline{m}_{*M}$
35.45 x 1 36.458 g/ moi	$= \frac{146}{36.458}$
	$\therefore \underline{n(HCl)} = 4.00 \text{ mol}$
	$n(ZnCl_2) = \frac{1}{2} \times n(HCl)$ = $\frac{1}{2} \times 4.00$
	∴ <u>n(ZnCl₂) = 2.00 mol</u>
*(ZnCl ₂) 65.38 x 1	$m(ZnCl_2) = n \times M$
35.45 X 2 136.28 g/ mol	= 2.00 x 136.28
100,20 3 11 8 /	$\therefore \underline{m(ZnCl_2) = 272.56g} = 273g (3 \text{ S.F.})$

QUESTION 3:

(

(

Iron Oxide (Fe_2O_3) can be reduced in a blast furnace by carbon monoxide to produce liquid iron according to the following equation:

 $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(l) + 3CO_2(g)$

How many grams of iron can be produced if 45 kg of iron oxide are consumed in the process?

√	?
$Fe_2O_3(s)$	$+ 3CO(g) \rightarrow 2Fe(l) + 3CO_2(g)$
* (Fe ₂ O ₃) 55.85 x 2 16.00 x 3 159.70 g/m	$= \frac{45,000}{159.70} (45 \text{ kg})$
÷	$\therefore \underline{n(Fe_2O_3)} = 281.8 \text{ mol}$ $n(Fe) = 2 \times n(Fe_2O_3)$ $= 2 \times 281.8$ $\underline{n(Fe)} = 563.6 \text{ mol}$
*(Fe) 55.85 x 1 55.85 g/ mol	$m(Fe) = n \times *M$ = 563.6 x 55.85
	$= 305.6 \times 50.85$ $\therefore \underline{m(Fe)} = 31,477 \text{ g or} = 31,500 \text{ g} (3 \text{ S.F.})$

QUESTION 4:

When salt solution is added to lead nitrate solution a white precipitate of lead chloride is formed according to the following molecular equation:

 $2NaCl(aq) + Pb(NO_3)_2(aq) \rightarrow 2NaNO_3(aq) + PbCl_2(s)$

If a solution containing 225 grams of NaCl is added to an EXCESS of $Pb(NO_3)_2$ then what mass of lead chloride crystals could be filtered from the solution?

$$\sqrt{2NaCl(aq + Pb(NO_3)_2(aq) \rightarrow 2NaNO_3(aq) + PbCl_2(s))}$$

*(NaCl) 22.99 x 1 35.45 x 1	n(NaCl) = <u>m</u> *M
58. 44 g/ mot	= <u>225</u> 58.44
	∴ <u>n(NaCl) = 3.85 mol</u>

$$n(PbCl_2) = \frac{1}{2} \times n(NaCl)$$

= $\frac{1}{2} \times \frac{3.85}{...}$
:. $n(PbCl_2) = 1.925 \text{ mol}$

*(Pb C l ₂)	m(i	$PbCl_2$	=	n	x	*M
207.20 x 1 35.45 x 2						
278.10 g/ mol			=	1.925	x	278.10
		<u>m(?)</u>	=	<u>535 .</u> 3	<u>} g</u>	
527			=	<u>535g</u>	(3	S.F)

QUESTION 5:

(

(

How many grams of potassium sulphide (K₂S) can be produced if 205.27 grams of potassium metal are heated with 112.35 grams of sulphur according to the following equation?

 $2K(s) + S(s) \rightarrow K_2S(s)$

$$\frac{\sqrt{}}{2K(s) + S(s)} \xrightarrow{?} K_2S(s)$$
*K
$$\frac{39.10 \times 1}{39.10 \text{ g/mol}} = n(K) = m \\
+M \\
= \frac{205.27}{39.10}$$

$$\frac{*S}{32.06 \times 1} = n(S) = m \\
+M \\
= \frac{205.27}{39.10}$$

$$\frac{*S}{32.06 \times 1} = n(S) = \frac{112.35}{32.06}$$

$$\frac{K}{S} = \frac{112.35}{32.06}$$

$$\frac{K}{S} = \frac{1}{2} \times n(K) \\
= \frac{1}{2} \times 5.25$$

$$\frac{N}{S} = \frac{1}{2} \times n(K) \\
= \frac{1}{2} \times 5.25$$

$$\frac{N}{S} = \frac{1}{2} \times n(K) \\
= \frac{1}{2} \times 5.25$$

$$\frac{N}{S} = \frac{1}{2} \times n(K) \\
= \frac{1}{2} \times 5.25$$

$$\frac{N}{S} = \frac{1}{2} \times n(K) \\
= \frac{1}{2} \times 5.25$$

$$\frac{N}{S} = \frac{1}{2} \times n(K) \\
= \frac{1}{2} \times 5.25$$

$$\frac{N}{S} = \frac{1}{2} \times n(K) \\
= \frac{1}{2} \times 5.25$$

$$\frac{N}{S} = \frac{1}{2} \times n(K) \\
= \frac{1}{2} \times 5.25$$

$$\frac{N}{S} = \frac{1}{2} \times$$

QUESTION 6:

Hydrochloric acid can be oxidised to chlorine (Cl₂) by oxidising agents such as manganese (IV) oxide:

$$MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g)$$

If 183g of HCl is reacted with 58g of MnO_2 , what mass of Cl_2 will be produced?

IF ALL
$$(MnO_2)$$
 IS CONSUMED:
• $n(HCl) = 4 \times n(MnO_2)$
 $= 4 \times 0.667$
 $\therefore n(HCl) = 2.668 \mod 1$
We have more than enough HCl
 $\therefore MnO_2$ IS LIMITING

$$n(Cl_{2}) = n(MnO_{2})$$

$$= 0.667$$

$$= 0.667 \text{ mol}$$

$$m(Cl_{2}) = n \times *M$$

$$= 0.667 \times 70.90$$

$$\therefore \underline{m(Cl_{2})} = 47.29 \underline{g}$$

$$= 47.3 \underline{g} (3 \text{ S.F.})$$

X 2

g/ mol

*Cl₂ 35.45

70.90

QUESTION 7:

¢

(

(

Calculate the mass of Nitric acid that can be manufactured from

20 tonnes of ammonia in the following synthesis:

4NH₃(g)	+	5O ₂ (g)	\rightarrow	$4NO(g) + 6H_2O(g)$
2NO(g)	+	O ₂ (g)	\rightarrow	2NO ₂ (g)
3NO ₂ (g)	+	H ₂ O(l)	\rightarrow	2HNO3(aq) + NO(g)

\checkmark			
$4NH_3(g) + 50$	$\phi_2(g) \rightarrow$	4NO(g)	+ 6H ₂ O(g)
$\boxed{1}$ 2NO(g) + O ₂	(g) →	1 2NO ₂ (g)	
1		1^{2}	
$3NO_2(g) + H$	$_{2}$ O(l) \rightarrow	-	aq) + NO(g)
1		$\frac{2}{3}$	
*NH3	n(NH ₃) = <u>m</u>	
14.01 x 1 1.008 x 3		*M	
17.034 g/ mot		$= \frac{20,00}{17}$	<u>)0,000</u>)34
	$\cdot p(NH_{a})$	= 1,174	
	•• <u>ILL NI L3/</u>		
:	n(HNO ₃) =	•	•
		= 2/3 x 1, - 781 065 .	•
-	. <u>n(HNO₃) :</u>	- 701,900 1	<u>1101</u>
1.008 X 1	m(HINO3) =	= n x *1	N
14.01 x 1 16.00 x 3		= 781,965	x 63.018
63.018 g/ mot	. <u>m(HNO₃)</u>	= 49,277,9	900g
			<u>000g</u> (3 S.F.)
		<u>= 49.3 t</u>	